Diameter Dependence of Aligned Growth of Carbon Nanotubes on a-Plane Sapphire Substrates

نویسندگان

  • Xiaolei Liu
  • Koungmin Ryu
  • Alexander Badmaev
  • Song Han
  • Chongwu Zhou
چکیده

Aligned carbon nanotubes have great potential for advanced nanotube transistors and integrated circuits. In this article, we studied the carbon nanotube alignment mechanism using a chemical vapor deposition growth on a-plane sapphire substrates. We synthesized carbon nanotubes of different diameters by controlling the catalyst size and observed that nanotubes of smaller diameters had a higher degree of alignment. In addition, a surprising observation was that misaligned nanotubes had a preferred orientation. Furthermore, we developed a numerical simulation method to calculate interaction energy between a-plane sapphire surface and carbon nanotubes of different diameters. The calculated results were in good agreement with our experimental observations, which confirmed the observed diameter-dependent alignment and the preferred orientation for misaligned nanotubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire.

We report high-throughput growth of highly aligned single-walled carbon nanotube arrays on a-plane and r-plane sapphire substrates. This is achieved using chemical vapor deposition with ferritin as the catalyst. The nanotubes are aligned normal to the [0001] direction for growth on the a-plane sapphire. They are typically tens of micrometers long, with a narrow diameter distribution of 1.34 +/-...

متن کامل

Drawing Circuits with Carbon Nanotubes: Scratch-Induced Graphoepitaxial Growth of Carbon Nanotubes on Amorphous Silicon Oxide Substrates

Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device...

متن کامل

Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices.

We present a novel nanotube-on-insulator (NOI) approach for producing high-yield nanotube devices based on aligned single-walled carbon nanotubes. First, we managed to grow aligned nanotube arrays with controlled density on crystalline, insulating sapphire substrates, which bear analogy to industry-adopted silicon-on-insulator substrates. On the basis of the nanotube arrays, we demonstrated reg...

متن کامل

Optimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes

Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...

متن کامل

Growth of well-aligned carbon nanotube arrays on silicon substrates using porous alumina film as a nanotemplate

Aligned, open-tipped carbon nanotube arrays of high density and uniformity were synthesized via a flame method on silicon substrates using a nanoporous template of anodized aluminum oxide from which the nanotubes were grown. The diameter and length of the nanotubes are controlled by the geometry of the aluminum oxide template. These results show the feasibility of integration between carbon nan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008